Mathematica – Maxima

por | 8 Diciembre, 2007

Mathematica – Maxima

Maxima
Mathematica
plot2d( sin(x),[x,-5,5]);
Plot[Sin[x],{x,-5,5}]
plot3d( sin(x*y),[x,-3,3],[y,-3,3] );
Plot3D[Sin[x y],{x,-3,3},{y,-3,3}]
diff(cos(x)^5,x)
D[Cos[x]^5,x]
integrate(tan(x),x);
Integrate[Tan[x],x]
integrate(%e^(-x^2),x,minf,inf);
Integrate[Exp[-x^2],{x,-Infinity,Infinity}]
romberg(sin(cos(x)), x, 1, 3);
NIntegrate[Sin[Cos[x]],{x,1,3}]
limit((1+1/n)^n,n,inf);
Limit[(1+1/n)^n,{n ->Infinity}]
float(%e);
N[E,100]
factor(4 + 5*x + 5*x^2 + x^3);
Factor[4 + 5*x + 5*x^2 + x^3]
trigsimp(cos(x)^2+2*sin(x)^2);
TrigReduce[Cos[x]^2+2 Sin[x]^2]
tex(sin(x));
TeXForm[Sin[x]]
factor(132413241324123412341234);
FactorInteger[132413241324123412341234]
solve(x^3-3*x+1,x);
Solve[x^3- 3*x+1==0,x]
solve([x^2+2*x+y+3,x*y-3],[x,y]);
Solve[{x^2+2*x*y+3==0, x*y-3==0},{x,y}]
sum(k,k,1,n),simpsum;
Sum[k,{k,1,n}]
niceindices(powerseries(sin(x), x, 0));
Series[Sin[x],{x,0,10}]